
DataEngBytes | 2023

Presented by Nathan Glover

Exposing Big
Edge Data:

What Big Cloud Providers Don't
Want You to Know

Senior Platform Engineer @ First Mode
Aspiring Data Engineer
AWS IoT Hero
Lover of cats

INTRODUCTION

WHAT'S THE
PLAN

Popular IoT data ingestion strategies

Why direct to S3/blob storage can be more cost efficient

How Apache Iceberg can support us

Simple and robust data pipeline to Apache Iceberg

Access patterns for users and data teams

One or more sensors operating
independently of each other
Communicate over MQTT
Publish/Subscribe model
Direct to cloud

TYPICAL IOT
PATTERN(S)

One or more sensors attached to
an edge
Communicate over MQTT, but
through an "Edge" device
Messages are mirrored up to the
cloud but actions can be taken at
the edge before that

TYPICAL IOT
PATTERN(S)

Focus on bulk data ingestion to the cloud
Ignoring actuation, communication from the
cloud to the device
Non-safety critical

This design can complement other, more
appropriate designs for those use cases.

When we talk edge, we're talking about AWS
Greengrass

Greengrass is the <Managed Everything>
for running on the edge.
Interoperable with

Azure IoT Edge
Kubernetes
Any compute that can run code to
service your sensors

CAVEATS
for this talk

We noticed that in most situations,
data is eventually landed in S3
Does it make more sense to cut the
middleman?
Do you meaningfully use the
features associated with Kinesis or
IoT Core?

LOWEST
COMMON
DENOMINATOR

Yes, if you use it wrong!

ISN'T S3
EXPENSIVE?

Data was sent at a rate of 100
messages/sec from 40 devices, a
total of 4000 messages/sec.

Each record averages out to 166.25
bytes

Costs are calculated over up to 720
hours (30 days).

EXPLORE THE
COSTS

Kinesis Data Stream is limited to
500 record batches (with the
provided clients by Amazon)

Kinesis Firehose has a minimum
record size of 5kb.

EXPLORE THE
COSTS

COST
FINDINGS

Highest cost is due to it not being appropriate for
the use case

IOT CORE (MQTT)

On the surface, it seems like it would make sense,
however, a small pricing quirk makes it much more
expensive
5k minimum data size, 5kb increments
right-sizing your data payloads is necessary

KINESIS FIREHOSE

This is primarily considered to be the wisest solution
for this use-case
Kinesis Producer Library (KPL) is difficult to work
with natively and is only available in Java

KINESIS DATA STREAMS

Goes from the most costly to the cheapest as the
batch size increases
Technically this could be called "cloud agnostic"
given its just blob storage.

S3

Take the best parts of Kinesis
Firehose and roll it ourselves
Batch data into a format that can
be read by a query engine and
compress
Send compressed data direct to S3
Use some underappreciated
Greengrass components and
features.

PROPOSED
DESIGN
(OVERVIEW)

https://github.com/t04glovern/aws-greengrass-json-gzip

EDGE
Greengrass Component Breakdown - Stage 1

EDGE
Greengrass Component Breakdown - Stage 2

EDGE
Greengrass Component Breakdown - Stage 3

The problem with this
Late data, offline
processing doesn't write
to correct partitions

QUERY
LANDED
DATA

Athena Query on top of
Landing data

QUERY
LANDED
DATA

Demonstrate the basic
functionality

QUERY
LANDED
DATA

Schema? never heard of it

QUERY
LANDED
DATA (BONUS)

Schema? never heard of it

QUERY
LANDED
DATA (BONUS)

APACHE ICEBERG
Let's solve that pesky landing
partition problem

A next-generation table format for big
data analytics.
Hidden Partitioning: Efficiently manages
large datasets.
Schema & Partition Evolution
Fast Plan & Execution

Metadata allows Iceberg to know
exactly what files are needed

https://www.starburst.io/blog/trino-on-ice-ii-in-place-table-evolution-and-cloud-compatibility-
with-iceberg/

APACHE ICEBERG

If you change the partition spec, old data
under this spec is unchanged
"Hidden" partitioning means you don't
need to write a query for a given partition

Just write a query, and iceberg does its
thing!

https://iceberg.apache.org/docs/latest/evolution/#partition-evolution

Partition Evolution

Add – add a new column to the table or to a nested struct
Drop – remove an existing column from the table or a
nested struct
Rename – rename an existing column or field in a nested
struct
Update – widen the type of a column, struct field, map key,
map value, or list element
Reorder – change the order of columns or fields in a nested
struct

APACHE ICEBERG

https://iceberg.apache.org/docs/latest/evolution/#schema-evolution

Schema Evolution

Similar benefits as Partition Evolution
Iceberg can handle schema changes

Adding a column back won't result
in "zombie" data coming back
from the dead.

APACHE ICEBERG

Each write to an Iceberg table creates a
snapshot (version of a table)
Snapshots require metadata to be stored

can balloon out to more than your
actual storage without maintenance.

We'll talk about Maintenance later!

Snapshots and Timetravel

SELECT count(*) FROM nyc.taxis
2,853,020

SELECT count(*) FROM nyc.taxis
FOR VERSION AS OF 2188465307835585443
2,798,371

SELECT count(*) FROM nyc.taxis
FOR TIMESTAMP AS OF TIMESTAMP '2022-01-01 00:00:00.000000 Z'
2,798,371

APACHE ICEBERG

https://medium.com/insiderengineering/apache-iceberg-reduced-our-amazon-s3-cost-by-90-997cde5ce931

Cost Vs. Hive

Head/GetObject requests comprise most
(90%) of the cost.
Iceberg can be configured to merge data
to target a file size

write.target-file-size-bytes

APACHE ICEBERG
Cost Vs. Hive cont.

Hive without compaction is about
twice the cost in the scenario I've
cooked up here.

16,625 bytes per file (100 records)
You would never want to do this.

APACHE ICEBERG
Cost Vs. Hive cont.

Using Glue jobs and compacting hive
partitions can significantly improve
costs - but....
Lots of work to setup

Either compact after data lands
and the next partition begins
(deal with breaking queries in
flight on old data)
Compact as it lands and, possibly
have a significant delay on data

CLOUD PROCESSING
Overview

Don't be

intimidated!

L O O K A T T H I S G O O S E A N D I L L

E X P L A I N

CLOUD PROCESSING
Data Landing Events - Stage 1

CLOUD PROCESSING
Data Landing Event SQS - Stage 2

CLOUD PROCESSING
Copy Batch to Scratch - Stage 3

CLOUD PROCESSING
Create Iceberg - Stage 4

CLOUD PROCESSING
Create Temporary Table - Stage 4

CLOUD PROCESSING
Insert into Iceberg from Temporary Table - Stage 4

What about failures?

CLOUD
PROCESSING

ICEBERG
HITS
DIFFERENT

Vacuum and Optimize
Frequent writes means a lot of snapshots

glue.skip-archive disables this

TABLE MAINTENANCE

There is currently no structured tooling for handling
schema changes. It's all raw SQL, or Iceberg SDK
calls yourself.

SCHEMA CHANGES

The AWS version has some odd behaviour
Data pathing cannot contain `=` characters
Snapshot property reported by Glue is in milliseconds but is
labelled seconds in API responses

AWS told us they would change the documentation to fix this??
Dropped columns will still show up in Glue and Athena

AWS support say this is by design, to support Lake Formation

"ATHENA" ICERBERG

VISUALIZE
THE DATA

Managed Grafana
Fully Managed Athena data
source support
Column autofill

VISUALIZE
THE DATA

Managed Grafana

All the bits are on GitHub
Data Pipeline
Edge components and sample
code

WHERE CAN
I GET ONE?

https://github.com/t04glovern/aws-greengrass-bricks

WHAT DOES
IT COST?
Breakdown the costs associated
with my solution

Data Size: 10TB (10,000GB) - Queried through Athena
Batch Size: 100
Incoming File Size (per record): 166.25 bytes
Batched Incoming File Size (per 100 records): 16,625 bytes
Iceberg File Size (configured): 512MB

S3 PutObject (with batched size): $3 (monthly)
Iceberg S3 GetObject (with 512MB file size): $0.01 (monthly)
S3 data returned to Athena:

$~7 returned, $~20 scanned (10 tb data)
Iceberg S3 Storage: $230.00 (monthly)
Athena ($5 per tb): $50 (10 tb data)

Note that I haven't calculated for compression ratio here - $50 is
the worst-case scenario.

Amazon Managed Grafana: $5 per user per month.
Lambda & SQS: $~10 (if that).

KMS: You probably need this, and it can be expensive
Expect KMS costs to scale with GetObject requests.

Assumptions

Costs

Extras

Not Pictured

CONS
Iceberg Table is 90% managed - the last 10% is
essential to get right.

NOT "MANAGED"

Managing schema changes is going to require SQL
wisdom
Tools like Flyway or Alembic or anything you might
use for managing automatic schema upgrades? -
Non-existent.

SQL'Y

It's comparatively very new tech, and it shows -
especially the Athena Iceberg variant.
I with Athena supported COPY INTO iceberg from S3
- the way you can with Snowflake

NOT BATTLE HARDENED

PROS
All pieces are usage-based billing.
Kinesis and Glue DPU hourly costs can't hurt you
here, you're safe.

PRICE CAN MAKE SENSE

Data lands in the purest form (that makes sense
financially)
Hive-style partitioning means you have an out if
Iceberg doesn't work for you.

RAW DATA

FLEXIBLE & RESILIENT
Failures can be reconciled by simply reprocessing
events.
Changes can be made with confidence

CONTACT ME

nathan@glovers.id.au

devopstar.com

@nathangloverAUS

THANK YOU
FOR LISTENING

