@ DataEngBytes | 2023

Exposing Big

Edge Data:

What Big Cloud Providers Don't
Want You to Know

Presented by Nathan Glover

wdy

/ i

INTRODUCTION

e Senior Platform Engineer @ First Mode
e Aspiring Data Engineer

e AWS loT Hero

e Lover of cats

WHAT'S THE
PLAN

e Popular loT data ingestion strategies

e Why direct to S3/blob storage can be more cost efficient
e How Apache Iceberg can support us

e Simple and robust data pipeline to Apache Iceberg

e Access patterns for users and data teams

TYPICAL IOT
PATTERN(S)

e One or more sensors operating
independently of each other

e Commuhnicate over MQTT

e Publish/Subscribe model

e Direct to cloud

-

_

P ub“Sh

. ta
m Topic: ovde

oPIC: fiothe,

L%

e
B '

K4
0 &:
)

-
.

e
Msg/Cmd

-

Msg/Cmd

(o)

Msg/CV

TYPICAL 10T

PATTERN(S) % .\
b

Msg/Cmd Edge

e One or more sensors attached to

ah edge

e Communicate over MQTT, but \
through an "Edge" device {{o}} .

e Messages are mirrored up to the Msg/Cmd

cloud but actions can be taken at
the edge before that

Msg/Cmd
W2

. Cmd

Edge

Msg/Cmd

CAVEATS

for this talk

e Focus on bulk data ingestion to the cloud
e |lgnoring actuation, communication from the
cloud to the device
 Non-safety critical
o This design can complement other, more
appropriate designs for those use cases.
e When we talk edge, we're talking about AWS
Greengrass
o Greengrass is the <Managed Everything>
for running on the edge.
o Interoperable with
= Azure loT Edge
= Kubernetes
= Any compute that can run code to
service your sensors

— 0O

1,000
msg/sec

10
msg/sec

Greengrass Custom
Component

O~ O

=[]0
—D

Greengrass
Stream Manager

QL0
0_0O

Greengrass

Message Broker

_

)

Greengrass Nucleus

~

/

LOWEST
COMMON
DENOMINATOR

e We noticed that in most situations,
data is eventually landed in S3

e Does it make more sense to cut the
middleman?

e Do you meaningfully use the
features associated with Kinesis or
loT Core?

Device

Big Box of
Nonsense

S3

ISN'T S3
EXPENSIVE?

3
3
e Yes, if you use it wrong! T 3
S T >
S3

53 PutObjects (batch size:
50000 - S3 PutObjects (batch size:

COSTS

Data was sent at a rate of 100
messages/sec from 40 devices, a
total of 4000 messages/sec.

Each record averages out to 166.25
bytes

Costs are calculated over up to 720
hours (30 days).

Cost (USD)

1)
— 10)
—— 53 PutObjects (batch size: 100)
—— 53 PutObjects (batch size: 1000)
—— 53 PutObjects (batch size: 10000)
Kinesis Firehose
40000 - loT MOQTT
Kinesis Data Streams
30000 -
20000 4
10000 4
D =
I I I I 1 I I I
0 100 200 300 400 500 600 700

Hours

EXPLORE THE

COSTS

Kinesis Data Stream is limited to
500 record batches (with the
provided clients by Amazon)

Kinesis Firehose has a minimum
record size of 5kb.

Cost (USD)

1400 ~

1200 A

1000 A

800 -

600 -

400 -

200 +

53 PutObjects (batch size: 100)
S3 PutObjects (batch size: 300)
S3 PutObjects (batch size: 500)
S3 PutObjects (batch size: 1000)
S3 PutObjects (batch size: 10000)
Kinesis Firehose

Kinesis Data Streams

Hours

I
400

I
500

I
800

I
700

COST
FINDINGS

> o

IOT CORE (MQTT)

e Highest cost is due to it not being appropriate for
the use case

KINESIS FIREHOSE

e On the surface, it seems like it would make sense,

however, a small pricing quirk makes it much more
expensive

e 5k minimum data size, 5kb increments
e right-sizing your data payloads is hecessary

KINESIS DATA STREAMS

e This is primarily considered to be the wisest solution
for this use-case

e Kinesis Producer Library (KPL) is difficult to work
with natively and is only available in Java

S3

e Goes from the most costly to the cheapest as the
batch size increases

e Technically this could be called "cloud agnostic"
given its just blob storage.

PROPOSED
DESIGN
(OVERVIEW)

e Take the best parts of Kinesis
Firehose and roll it ourselves

e Batch data into a format that can
be read by a query engine and
compress

e Send compressed data direct to S3

e Use some underappreciated
Greengrass components and
features.

I Greengrass StreamManager

l Y se—
message.payload: <JSON> — D =

stream: BatchMessageStream ——]

1

Greengrass Component
com.devopstar.json.gzip

Processor.StreamName: BatchMessageStream
Processor.BatchSize: 100

Processor.Interval: 10

Processor.Path: /tmp/greengrass/gzip
Uploader.BucketName: robocat-landing
Uploader.Prefix: robotcat-01

Uploader.Interval: 10

Uploader.Path: /tmp/greengrass/gzip/*
LoglLevel: INFO

/tmp/greengrass/gzip/batch_<x>.jsonl.gzip

https://github.com/tO4glovern/aws-greengrass-json-gzip

robocat-landing
(S3)

EDGE

Greengrass Component Breakdown - Stage 1

Greengrass StreamManager

b A A b A
....—) BatchMessageStream —> rr'r
R

Msg Msg Msg Msg

(’ — \ [tmp/greengrass/gzip/batch_1.jsonl.gzip
stream manager client = StreamManagerClient()

| stream_manager client.append message(

stream_name="BatchMessageStream",
data=json.dumps(
{llmessageﬂ: "Hello wor\ld!"}

) .encode())
_ *] Y,

EDGE

Greengrass Component Breakdown - Stage 2

Greengrass StreamManager

e O
] robocat-landing
""""""""""""" . (S3)
, input_url=file://tmp/greengrass/gzip/batch_1.jsonl.gzip
DirectoryUploader bucket=robocat-landing
S3ExportTaskExecutorConfig Key=baten_1jsonl.gzIp
status_config E
status_level=LOG (~
tmp/greengrass/gzip/* status_stream_name=... The keys that specify your target Amazon S3
objects can include valid Java
DateTimeFormatter
; strings in !{timestamp:value} placeholders.
v - — _)
DirectoryUploaderStatus &

year=!{timestamp:YYYY}/
month=!{timestamp:MM}/
day=!{timestamp:dd}/
hour=!{timestamp:HH}/batch_1.jsonl.gzip

EDGE

Greengrass Component Breakdown - Stage 3

robocat-landing
(S3)

Upload
COMPLETE

Greengrass StreamManager

DirectoryUploaderStatus

Itmp/greengrass/gzip/*

N

DELETE

Amazon S3 > Buckets » batch-uploader-robocat-greengrass-landing » robocat/ » year=2023/ > month=07/ > day=13/ > hour=14/

DATA

hour=14/
e The problem with this Objects (10)
o Late data, offline
processing doesn't write el il i ‘ 1 ©
to correct Pa rtitiOnS] Name A Type v Last modified v ‘ Size v Storage class v
] [batch_0.jsonl.gz gz July 13, 2023, 22:26:50 (UTC+08:00) 5.3KB Standard
] [3 batch_1.jsonl.gz gz July 13, 2023, 22:26:49 (UTC+08:00) 3.0KB Standard
] [batch_2.jsonl.gz gz July 13, 2023, 22:26:59 (UTC+08:00) 2.9KB Standard
] [batch_3.jsonl.gz gz July 13, 2023, 22:27:09 (UTC+08:00) 2.9KB Standard
] [batch_4.jsonl.gz gz July 13, 2023, 22:27:20 (UTC+08:00) 2.9 KB Standard
] [batch_5.jsonl.gz gz July 13, 2023, 22:27:30 (UTC+08:00) 2.9KB Standard
(] [3 batch_6.jsonl.gz gz July 13, 2023, 22:27:40 (UTC+08:00) 2.9KB Standard
] [batch_7.jsonl.gz gz July 13, 2023, 22:27:50 (UTC+08:00) 3.0KB Standard
] [batch_8.jsonl.gz gz July 13, 2023, 22:28:00 (UTC+08:00) 2.9KB Standard
] [batch_9.jsonl.gz gz July 13, 2023, 22:28:10 (UTC+08:00) 2.9KB Standard

QUERY
LANDED
DATA

e Athena Query on top of
Landing data

CREATE EXTERNAL TABLE IF NOT EXISTS greengrass_data (
“id” string,
“timestamp™ timestamp,
“speed” 1int,
“temperature” float,
“location” struct < lat: float, 1lng: float >
)
PARTITIONED BY (year int, month int, day int, hour int)
ROW FORMAT SERDE 'org.apache.hive.hcatalog.data.JsonSerDe’
WITH SERDEPROPERTIES ("timestamp.formats"="yyyy-MM-dd'T'HH:mm:ss.SSSSSSZZ")
LOCATION 's3://batch-uploader-robocat-greengrass-landing/robocat/’
TBLPROPERTIES (

"projection.enabled” = "true",
"projection.year.type" = "integer",
"projection.year.range" = "2023,2033",
"projection.month.type"” = "integer",
"projection.month.range" = "1,12",
"projection.month.digits" = "2",
"projection.day.type" = "integer",
"projection.day.range" = "1,31",
"projection.day.digits" = "2",
"projection.hour.type” = "integer"”,
"projection.hour.range" = "0,23",
"projection.hour.digits" = "2",
"storage.location.template” = "s3://batch-uploader-robocat-greengrass-

landing/robocat/year=%${year}/month=${month}/day=${day}/hour=${hour}"

) I

QUERY
LANDED
DATA

¢ Demonstrate the basic
functionality

SELECT *

FROM "default"."greengrass_data"

WHERE year = 2023
AND month = 7
AND day = 12
AND hour = 14

Query results

Query stats

@ Completed Time in queue: 98 ms Run time: 957 ms Data scanned: 24.65 KB
Results (845) (3 Copy Download results

‘. Q, Search rows 1 > &
v id v timestamp speed temperature v location year ¥ month ¥ day hour W
1 1 2023-07-12 14:13:20.563 52 20.8 {lat=-31.969883, Ing=115.878716} 2023 7 12 14

2 1 2023-07-12 14:13:20.670 52 20.41 {lat=-31.969313, Ing=115.8787} 2023 7 12 14

3 1 2023-07-12 14:13:20.775 52 20.66 {lat=-31.969738, Ing=115.87843} 2023 7 12 14

4 1 2023-07-12 14:13:20.879 51 20.43 {lat=-31.970194, Ing=115.878975} 2023 7 12 14

5 1 2023-07-12 14:13:20.984 51 20.28 {lat=-31.970276, Ing=115.878136} 2023 7 12 14

6 1 2023-07-12 14:13:21.089 51 20.3 {lat=-31.969902, Ing=115.87753} 2023 7 12 14

7 1 2023-07-12 14:13:21.194 51 20.11 {lat=-31.970348, Ing=115.878296} 2023 7 12 14

8 1 2023-07-12 14:13:21.298 51 20.14 {lat=-31.970379, Ing=115.87902} 2023 7 12 14

9 1 2023-07-1214:13:21.402 51 19.93 {lat=-31.969402, Ing=115.87956} 2023 7 12 14

QUERY
LANDED
DATA (BONUS)

e Schema? never heard of it

—— —

CREATE EXTERNAL TABLE IF NOT EXISTS greengrass_json_data (
jsonstring string

)
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.RegexSerDe'

WITH SERDEPROPERTIES (

"input.regex" = "~(.*)%",
"projection.enabled" = "true",
"projection.year.type” = "integer",
"projection.year.range" = "2023,2033",
"projection.month.type" = "integer",
"projection.month.range" = "1,12",
"projection.month.digits"” = "2",
"projection.day.type” = "integer"”,
"projection.day.range" = "1,31",
"projection.day.digits" = "2",
"projection.hour.type” = "integer",
"projection.hour.range" = "0,23",
"projection.hour.digits” = "2",

"storage.location.template"="s3://batch-uploader-robocat-greengrass-
landing/robocat/year=${year}/month=${month}/day=${day}/hour=${hour}"
) LOCATION 's3://batch-uploader-robocat-greengrass-landing/robocat/"';

QUERY
LAN DED SELECT * FROM "default"."greengrass_json_data" limit 10
DATA (BONUS) | — —

® Completed Time in queue: 102 ms Run time: 600 ms Data scanned: 8.75 KB
Results (10) | Copy | Download results
e Schema? never heard of it . | |
Q. Search rows 1 {0}
v jsonstring v
1 {"id":"1","timestamp":"2023-07-13T14:27:43.727113+00:00","speed™:47.7 2,"temperature™:9.28,"location":{"lat":-31.959397733165545,"lng":115.89989853611982}}
2 {"id":"1","timestamp":"2023-07-13T14:27:43.831589+00:00","speed":47.84,"temperature":9.4,"location":{"lat":-31.95844675372861,"lng":115.89972415086329}}
3 {"id""1","timestamp":"2023-07-13T14:27:43.935858+00:00","speed":48.16,"temperature":9.78,"location":{"lat":-31.958945186576024,"lng":115.90072390858766}}
4 {"id":"1","timestamp":"2023-07-13T14:27:44.040010+00:00","speed":47.98,"temperature":9.72,"location":{"lat":-31.95817274560059,"lng":115.8998 75796 796 38}}
5 {"id""1" "timestamp":"2023-07-13T14:27:44.144238+00:00","speed":48.0,"temperature":9.74,"location":{"lat":-31.95792296 1466995, "Ing":115.89897024319039}}
6 {"id":"1","timestamp":"2023-07-13T14:27:44.248718+00:00","speed":48.24,"temperature™9.5,"location":{"lat":-31.95882830183242,"Ing":115.89812315023816}}
7 {"id":"1","timestamp™":"2023-07-13T14:27:44.353758+00:00","speed":48.11,"temperature":9.3,"location":{"lat":-31.958415349710833,"lng":115.89858057726154}}
8 {"id":"1","timestamp":"2023-07-13T14:27:44.462630+00:00","speed":47.85,"temperature:9.32,"location":{"lat":-31.958034706122458,"Ing":115.89956419571149}}
9 {"id""1","timestamp":"2023-07-13T14:27:44.570846+00:00","speed":48.13,"temperature":9.3,"location":{"lat":-31.957290339030926,"lng":115.90030159135453}}

10 {"id""1","timestamp":"2023-07-13T14:27:44.683935+00:00","speed":48.15,"temperature":9.44,"location":{"lat":-31.95704576863196,"Ing":115.901104190704 2}}

APACHE ICEBERG

Let's solve that pesky landing
partition problem

hive.some.table iceberg.some.table
Metastore
S[P1 ¢ P2 LS1KK

e A next-generation table format for big

data analytics. File Storag ‘ \
ile Storage P1 ML P2
 Hidden Partitioning: Efficiently manages - -

large datasets. . 3

e Schema & Partition Evolution tﬁjﬂ tﬂm L 5 J [F5

e Fast Plan & Execution D ﬁ - el
o Metadata allows Iceberg to know |

exactly what files are needed Lij Lj DJ

https://www.starburst.io/blog/trino-on-ice-ii-in-place-table-evolution-and-cloud-compatibility-
with-iceberg/

APACHE ICEBERG

EXAMPLE QUERY
A . = partitions included
Pa rtition EVOIUtlon SELECT * FROM booking_ table in plan for query
WHERE
date > 2008-12-14 AND
Split plan 1 date < 2009-01-14 Split plan 2
booking_table partition spec changes
¥

e |f you change the partition spec, old data

under this spec is uncha nged PARTITIONED BY MONTH(date) PARTITIONED BY DAY(date)

e "Hidden" partitioning means you don't .
need to write a query for a given partition | 12|38 | 4|5
o Just write a query, and iceberg does its S A A

: 1 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31
* t

2009-01-01

thing!

https://iceberg.apache.org/docs/latest/evolution/#partition-evolution

APACHE ICEBERG

Schema Evolution

e Similar benefits as Partition Evolution
e |ceberg can handle schema changes
o Adding a column back won't result
in "zombie" data coming back
from the dead.

/- Add - add a new column to the table or to a nested struct

e Drop - remove an existing column from the table or a
nested struct

e Rename - rename an existing column or field in a nested
struct

e Update - widen the type of a column, struct field, map key,
map value, or list element
e Reorder - change the order of columns or fields in a nested

\ struct

~

/

https://iceberg.apache.org/docs/latest/evolution/#tschema-evolution

APACHE ICEBERG

Snapshots and Timetravel

SELECT count(*) FROM nyc.taxis

2,853,020
e Each write to an Iceberg table creates a
shapshot (version of a table) SELECT count(*) FROM nyc.taxis
e Snapshots require metadata to be stored FOR VERSION AS OF 2188465307835585443
o can balloon out to more than your 2,798,371

actual storage without maintenance.

: SELECT t(*) FROM nyc.taxi
 We'll talk about Maintenance later! SOUIEL) Ryc.taxis

FOR TIMESTAMP AS OF TIMESTAMP '2022-01-01 00:00:00.000000 Z'
2,798,371

APACHE ICEBERG

Cost Vs. Hive

» Head/GetObject requests comprise most i—" il
(90%) of the cost. ...
e Iceberg can be configured to merge data F =BT . Beo=l=33-
to target a file size _
o write.target-file-size-bytes "l"liil"ii T i" iii

1l-15 Jul-21 Jul-27 Aug-02 Aug-08 Aug-14 Aug-20 Aug-26 Sep-01* Sep-07* Sep-1

B GetObject [StandardStorage [HeadObject ListBucket [UploadPart [Others

https://medium.com/insiderengineering/apache-iceberg-reduced-our-amazon-s3-cost-by-90-997cde5ce931

AI ACH E ICE B E RG Hive vs Iceberg Total Costs for varying data volumes (100 records/file)

I Incoming files are approximately 166.25 bytes each, Iceberg files are approximately 512MB each.
COSt VS' H IVG CO n t' Total costs include S3 GET requests and storage costs for up to 10TB of data.

— Hive
Iceberg

e Hive without compaction is about

twice the cost in the scenario I've 400 1
cooked up here.
o 16,625 bytes per file (100 records)
 You would never want to do this. e
E 200 -
100
-
EII 2 Dlﬂﬂ 4D:Dﬂ ED:II}CI ED:DU lDdﬂﬂ

Data Volume (GB)

AI ACH E IC E B E RG Hive with Glue Jobs vs Iceberg Total Costs for varying data volumes (100 records/file)

1 Incoming files are approximately 166.25 bytes each, Iceberg and compacted Hive files are approximately 512MB each.
COSt VS‘ H Ive CO nt' Total costs include 53 GET requests, storage costs, and Glue job costs (for compacted Hive) for up to 10TB of data.

Iceberg
Hive with Glue Jobs

e Using Glue jobs and compacting hive 250 -
partitions can significantly improve
costs - but....

e Lots of work to setup =
o Either compact after data lands _
and the next partition begins S 150 1
(deal with breaking queries in §
flight on old data)
o Compact as it lands and, possibly
have a significant delay on data
50 A

T T T T T
0 2000 4000 6000 2000 10000
Data Volume (GB)

CLOUD PROCESSING

Overview
s3 CopyObiject

(SQS)

batch-uploader

s3://robocat-scratch
(Lambda)

oo“tb 6\ robocat-landing s3-event-trigger robocat-landing

(S3) (EventBridge) (SQS)

s3://robocat-athena- quenes@

CreatelcebergTable]
s3://robocat-iceberg

CreateTempTable

CopyFromTempTolceberg

&l 1

robocat-landing s3-event-trigger

CLOUD PROCESSING

Data Landing Events - Stage 1

\ 4

(S3) (EventBridge)

. a a
__________________________________ o "detail-type": ["Object Created"],

N/ robocat/year=2023/...../batch_0.jsonl.gz "source”: ["aws.s3"],

\Q "detail": {
T < "bucket": {

\\Q robocat/year=2023/...../batch_1.jsonl.gz "name": ["robocat-landing"]
__________________________________ }

] robocat/year=2023/...../batch_2 jsonl.gz }

\J

_

CLOUD PROCESSING

Data Landing Event SQS - Stage 2

batch-uploader
(Lambda)

robocat-landing
(SQS)

"version": "@",
"id": "ec9a27c5-db62-373f-09d0-516a37027c6f",
"detail-type": "Object Created”,
“source": "aws.s3",
"account”: "536829251200",
“time": "2023-07-04T14:29:282",
"region”: "ap-southeast-2",
"resources": [
"arn:aws:s3:::robocat-landing"
1,

"detail": {
"version": "@",
"bucket": {
"name"”: "robocat-landing"

¥s
"object": {
"key": "robocat/year=2023/month=07/day=04/hour=05/batch_0.jsonl.gz",
"size": 3332,
"etag": "2f6604d516231bdfb7d02a7e1lc378685",
"sequencer": "0064A42CC81FDO6F53"

I

"request-id": "HMOKMYCWTE3NRNES",
"requester”: "536829251200",
"source-ip-address": "33.22.111.00",
"reason": "PutObject"”

CLOUD PROCESSING

Copy Batch to Scratch - Stage 3

batch-uploader
(Lambda)

f{)

;éﬁject": {
"key": "robocat/year=2023/month=07/day=04/hour=05/batch_0.jsonl.gz",

"size™: 3332, S
"etag": "2f6604d516231bdfb7d02a7e1c378685", S,
"sequencer": "0064A42CC81FDO6F53" L

S3 CopyObject

robocat-landing
(S3)

[53://robocat—scratch/<lambda_context_id>/batch_6.jsonl.gz]

CLOUD PROCESSING

Create Iceberg - Stage 4

batch-uploader
(Lambda)

+
#

CreatelcebergTable /
K > s3://robocat-iceberg

/ (/Z;EATE TABLE IF NOT EXISTS greengrass_data_iceberg (ﬁﬁ\\
“id® string,

“timestamp® timestamp,

“speed” int,

“temperature” float,

"location® struct<lat:float, lng:float>

s3://robocat-athena-queries

)
PARTITIONED BY (hour(timestamp))

LOCATION 's3://robocat-iceberg/’
TBLPROPERTIES (
'table type'="ICEBERG',
'format'="parquet'

_ _ J

CLOUD PROCESSING

Create Temporary Table - Stage 4

A

s3://[robocat-athena-queries

batch-uploader
(Lambda)

s3://robocat-scratch

4@2 CreateTempTable /

e

(/;REATE EXTERNAL TABLE IF NOT EXISTS greengrass_data_iceberg 72495932c0b5 (
“id™ sEring;

“timestamp™ timestamp,

"speed’ int,

“temperature float,
"location” struct<lat:float, lng:float>

WITH SERDEPROPERTIES ("timestamp.formats"="yyyy

e

)
ROW FORMAT SERDE 'org.apache.hive.hcatalog.data.JsonSerDe'
= -MM-dd'T'HH:mm:ss.SSSSSSZZ")

<

2

K\EECATION 's3://robocat-scratch/df922f53-4a0f-5f92-9310-72495932c0Ob5"’

CLOUD PROCESSING

Insert into Iceberg from Temporary Table - Stage 4

batch-uploader
(Lambda)

<
s3://robocat-scratch

s3://robocat-iceberg

s3://robocat-athena-queries

. @ 2 CopyFromTempTolceberg 4 7

—

INSERT INTO greengrass_data_iceberg
SELECT * FROM greengrass_data_iceberg_72495932c0b5

\‘—-"—l—l_'_‘_ —

CLOUD
PROCESSING

e What about failures?

AT e e e o e e e = = =

robocat-landing-diq
(SQS)

batch-uploader
(Lambda)

robocat-landing
(SQS)

o

//;;% start_message move_task():

sqs = boto3.client('sqs') _ﬁﬁ\\

source_arn = 'arn:xxxx:robocat-landing-dlq'
dest_arn = 'arn:xxxx:robocat-landing'
try:

sqs.start_message move task(
SourceArn=source_arn,
DestinationArn=dest_arn

except ClientError as e:

print(e) j//

ICEBERG TABLE MAINTENANCE

e Vacuum and Optimize Q |
e Frequent writes means a lot of snapshots Version 483350 (Current version) _,
August 4, 2023 at 15:32:48
H I I s o glue.skip-archive disables this ¥
SCHEMA CHANGES

D I F F E R E N I e There is currently no structured tooling for handling

schema changes. It's all raw SQL, or Iceberg SDK
calls yourself.

"ATHENA" ICERBERG

e The AWS version has some odd behaviour

e Data pathing cannot contain =" characters
ﬁ lgsle 5;‘1352"“95: e Snapshot property reported by Glue is in milliseconds but is
vacuum_max_snhapshot_age_seconds 86400000 labelled seconds in API responses
write_compression gzip = o AWS told us they would change the documentation to fix this??
FRliers PRIGLC: e Dropped columns will still show up in Glue and Athena
vacuum_min_snapshots_to_keep 5 o i)

o AWS support say this is by design, to support Lake Formation

Iceberg storage table properties:

key value

history.expire.max-snapshot-age-ms 86400000
write.delete.parquet.compression-codec gzip

VISUALIZE
THE DATA

e Managed Grafana

e Fully Managed Athena data
source support

e Column autofill

Time series v

Robocat Temp

22:12:30

== temperature

B8 Query 1

Data source @

Region

Data source
Database
Table 0,

Column ()

¢ 1 Transform 0

Amazon Athena -~ @

default (ap-southea...

default (AwsDataCat... ~

default (default)

greengrass_data_ice... ~

Query resultr j

Enable

TTL (mins)
Frames

Format as

timestamp
speed
temperature

location

2:12:25 to 2023-07-12

22:13:00 22:13:10 2:13: 22:13:30

'[-.:.JLJE'I"_\Jr Optir;] ns MD = auto = 1190 Interval = 50ms

(timestamp as TIMESTAMP),
temperature
FROM % table
$ timeFilter(timestamp)
gy 1

22:13:5(

Query inspector

Run query

©

Recent queries (565) & | Download CSV ¥

Q. Search recent queries ‘ 1 2 3 4 5 6 7 .29 > &
Execution ID v | Query v | Status v Run time v Data scanned v
VI s UAI I 2 I O e2cc43d1-bf46-48a... SELECT CAST(timestamp as TIMESTAMP), t... (» Completed 1.373 sec 5.51 KB
O 60edae15-f1ac-476... SELECT CAST(time: .
® Query 13 : ‘ + ‘ v
T H E D AT A O 2Oz, SELECT CASTItime: R
. 2 CAST(timestamp as TIMESTAMP),
O aced3117-54c7-4€7... SELECT CAST(time:
3 temperature
4 FROM data iceb
® 70ed43c5-212c-4d3... SELECT CAST(time: Setes e e . _ , ,
S WHERE timestamp BETWEEN TIMESTAMP '2023-07-12 14:12:25' AND TIMESTAMP '2023-07-12 14:13:51
_ 6 ORDER BY 1
°® M a naged G ra fa na O 387b9b5d-64e4-4c... SELECT CAST(time:
O 2c768f3e-f347-414... SELECT CAST(locat Vi
SQL Ln 1, Col1 >= [
O eea32f7c¢-5299-422... SELECT CAST(time: 2 = B @
O cc78849c-97a3-4ce. .. SELECT CAST(time: Run again Explain [2 Clear Create ¥ (D Reuse query results
up to 60 minutes ago
O a00e1884-bbd2-4d... SELECT CAST(locat
uery results uery stats
O 38db1e91-2180-4c... SELECT CAST(time: R ey
O ccd79985-7e1a-4¢6. .. SELECT CAST(time: © Completed Time in queue: 96 ms Run time: 1.373 sec Data scanned: 5.51 KB
Results (805) Copy ‘ ‘ Download results
Q. Search rows ‘ 1 . > &
v _col0 v temperature v
1 2023-07-12 14:12:25.052 27.18
2 2023-07-12 14:12:25.157 27.05
3 2023-07-12 14:12:25.261 27.31

4 2023-07-12 14:12:25.365 27.7

Search or jump to... ctri+k

= Home > Dashboards > Robocat W o3 i+ @ @ o3 < (@ 2023-07-12 22:12:24 to 2023-07-12 22:13:51

Robocat Location Robocat Speed Robocat Speed

62
60
58
56
54
52
50

48

robocat-01 TR . . 46
Y y 22:12:30 22:12:45 22:13:00 2513515 22:13:30 22:13:45

== speed

Robocat Temp

32

30

28

b tondl,

22:12:30 22:12:40 22:12:50 22:13:00 22:13:10 22:13:20 22:13:30 22:13:40 22:13:50
== temperature

WHERE CAN
| GET ONE?

e All the bits are on GitHub
o Data Pipeline
o Edge components and sample
code

https://github.com/tO4glovern/aws-greengrass-bricks

Assumptions

e Data Size: 10TB (10,000GB) - Queried through Athena

e Batch Size: 100

e Incoming File Size (per record): 166.25 bytes
Batched Incoming File Size (per 100 records): 16,625 bytes
Iceberg File Size (configured): 512MB

WHAT DOES
IT COST?

Costs
e S3 PutObject (with batched size): $3 (monthly)
Breakdown the costs associated e Iceberg S3 GetObject (with 512MB file size): $0.01 (monthly)
with my solution e S3 data returned to Athena:

o §~7 returned, $~20 scanned (10 tb data)
e Iceberg S3 Storage: $230.00 (monthly)
e Athena ($5 per tb): $50 (10 tb data)
o Note that | haven't calculated for compression ratio here - $50 is
the worst-case scenario.

Extras
e Amazon Managed Grafana: $5 per user per month.
e Lambda & SQS: $~10 (if that).

Not Pictured
e KMS: You probably need this, and it can be expensive
o Expect KMS costs to scale with GetObject requests.

NOT "MANAGED"

e Iceberg Table is 90% managed - the last 10% is
essential to get right.

SQL'Y

¢ Managing schema changes is going to require SQL
wisdom

e Tools like Flyway or Alembic or anything you might
use for managing automatic schema upgrades? -
Non-existent.

NOT BATTLE HARDENED

e It's comparatively very new tech, and it shows -
especially the Athena Iceberg variant.

e | with Athena supported COPY INTO iceberg from S3
- the way you can with Snowflake

P Ros PRICE CAN MAKE SENSE

o All pieces are usage-based billing.
e Kinesis and Glue DPU hourly costs can't hurt you
here, you're safe.

RAW DATA

e Data lands in the purest form (that makes sense
N financially)

e Hive-style partitioning means you have an out if
Iceberg doesn't work for you.

FLEXIBLE & RESILIENT

e Failures can be reconciled by simply reprocessing
events.
e Changes can be made with confidence

CONTACT ME

nathan@glovers.id.au
devopstar.com

@nathangloverAUS

THANK YOU
FOR LISTENING

